LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MAPbBr3 nanocrystals from aqueous solution for poly(methyl methacrylate)-MAPbBr3 nanocrystal films with compression-resistant photoluminescence

Photo by demoya from unsplash

In this work, we develop an environmental-friendly approach to produce organic-inorganic hybrid MAPbBr3 (MA = CH3NH3) perovskite nanocrystals (PeNCs) and PMMA-MAPbBr3 NC films with excellent compression-resistant PL characteristics. Deionized water… Click to show full abstract

In this work, we develop an environmental-friendly approach to produce organic-inorganic hybrid MAPbBr3 (MA = CH3NH3) perovskite nanocrystals (PeNCs) and PMMA-MAPbBr3 NC films with excellent compression-resistant PL characteristics. Deionized water is used as the solvent to synthesize MAPbBr3 powder instead of conventionally-used hazardous organic solvents. The MAPbBr3 PeNCs derived from the MAPbBr3 powder exhibit a high photoluminescence quantum yield (PLQY) of 93.86%. Poly(methyl methacrylate) (PMMA)-MAPbBr3 NC films made from the MAPbBr3 PeNCs retain ∼97% and ∼91% of initial PL intensity after 720 h aging in ambient environment at 50 °C and 70 °C, respectively. The PMMA-MAPbBr3 NC films also exhibit compression-resistant photoluminescent characteristics in contrast to the PMMA-CsPbBr3 NC films under a compressive stress of 1.6 MPa. The PMMA-MAPbBr3 NC film integrated with a red emissive film and a blue light emitting source achieves an LCD backlight of ∼114% color gamut of National Television System Committee (NTSC) 1953 standard.

Keywords: pmma mapbbr3; methyl methacrylate; compression resistant; mapbbr3; poly methyl

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.