The potential of converting traditional biomass into low-cost HER catalysts has broad application prospects. In this paper, fungus is used as a carbon-based carrier. The bimetallic catalyst RuM-C (M =… Click to show full abstract
The potential of converting traditional biomass into low-cost HER catalysts has broad application prospects. In this paper, fungus is used as a carbon-based carrier. The bimetallic catalyst RuM-C (M = V, Mo, W, Zn, Cu) was synthesized under inert gas protection at high temperature. The order of electrocatalytic activity is RuV-C > RuZn-C > RuW-C > RuMo-C > Ru-C > RuCu-C > BF-C, which indicates that RuV-C exhibits excellent HER activity. Due to its irregular sheet structure, the specific surface area of the catalyst is increased. Impressively, it exhibits extremely high catalytic activity for HER in 1 M KOH due to favorable kinetics and excellent specific activity. Consequently, the prepared RuV-C exhibited excellent and stable HER activity compared Ru-C with a low overpotential of 65.78 mV at the current densities of 10 mA cm−2 and Tafel slope of 45.26 mV dec−1. The potential only decreased by 88 mV after 24 h of continuous testing, which indicates that the catalyst has outstanding stability. This work will provide positive inspiration for the promotion of a new Ru-based biomass HER electrocatalyst.
               
Click one of the above tabs to view related content.