We theoretically study the electromagnetic forces (optical gradient force, optical torque and vacuum friction) acting on a spherical anisotropic nanoparticle, which can be characterized by multilayer hyperbolic metamaterials (mHMMs). We… Click to show full abstract
We theoretically study the electromagnetic forces (optical gradient force, optical torque and vacuum friction) acting on a spherical anisotropic nanoparticle, which can be characterized by multilayer hyperbolic metamaterials (mHMMs). We find three important results about these forces: (i) Firstly, we theoretically demonstrate that the optical gradient force produced on a mHMMs nanoparticle can be flexibly tuned, from pushing the particle to pulling it, just via changing incident angle of illuminating plane light wave. (ii) Secondly, we find the optical torque acting on the mHMMs nanoparticle (its filling factor is around 0.3) can be tuned between positive and negative via changing the incident angle of circularly polarized plane light. Therefore, the rotating mHMMs nanoparticle with designed filling factor can be accelerated or decelerated by the optical torque. (iii) Finally, due to the large fluctuations of dipole polarizability of mHMMs nanoparticle with appropriate filling factor, we propose a new method to obtain the large enhancement of vacuum friction torque by designing the filling factor of the rotating mHMMs nanoparticle.
               
Click one of the above tabs to view related content.