LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shift of Switching Threshold in Low-Dimensional Semiconductor-Based Complementary Inverters via Inkjet Printing.

Photo from wikipedia

MoS2 crystals grown by chemical vapor deposition are suited for realization of practical 2D semiconductor-based electronics. In order to construct complementary circuits with n-type MoS2, another p-type semiconductor, whose performance… Click to show full abstract

MoS2 crystals grown by chemical vapor deposition are suited for realization of practical 2D semiconductor-based electronics. In order to construct complementary circuits with n-type MoS2, another p-type semiconductor, whose performance can be adjusted corresponding to that of MoS2 in the limited chip area, has to be sought. Herein, we present a method for tuning switching threshold voltages of complementary inverters simply via inkjet printing without changing their channel dimensions. Random networks of inkjet printed single-walled carbon nanotubes are formed as p-channels beside MoS2, and their density and thickness are controlled by varying the number of printed layers. As a result, p-type transistor characteristics as well as inverter characteristics are facilely tuned only by varying the number of printed layers.

Keywords: semiconductor; complementary inverters; switching threshold; semiconductor based; via inkjet; inkjet printing

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.