LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dual-emission fluorescent nanoprobe based on Ag nanoclusters for sensitive detection of Cu(II)

Photo by shelbymdesign from unsplash

Noble metal nanoclusters have attracted much attention because of their excellent fluorescence properties. In this work, we demonstrated a dual-emission fluorescent nanocomposite based on silver nanoclusters. First, we synthesized positively… Click to show full abstract

Noble metal nanoclusters have attracted much attention because of their excellent fluorescence properties. In this work, we demonstrated a dual-emission fluorescent nanocomposite based on silver nanoclusters. First, we synthesized positively charged His-AgNCs, which emits intense blue light, and then Ag nanoclusters with stable red emission were synthesized using DHLA as the ligand. Thus a dual-emission fluorescent nanoprobe was successfully obtained through electrostatic self-assembly, with the advantages of good water solubility and excellent stability. Based on the intensity ratio of the two emission peaks, the nanoprobe can be used for selective and sensitive detection of copper ions, and presents a good linear relationship within a certain concentration range. In addition, we also designed a polymer film, and our dual-emission nanoprobe was successfully loaded onto it, which means that the visual detection of copper ions is possible. This indicates that our dual-emission fluorescent nanoprobe has potential application prospects in environmental analysis, medical diagnosis, biological detection, etc.

Keywords: emission fluorescent; dual emission; fluorescent nanoprobe; emission; detection

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.