LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of collision/reaction gases in single-particle ICP-MS for sizing selenium nanoparticles and assessment of their antibacterial activity

Photo by hudsonhintze from unsplash

Selenium nanoparticles (SeNPs) have recently attracted attention because they combine the benefits of Se and lower toxicity compared to other chemical forms of this element. In this study, SeNPs were… Click to show full abstract

Selenium nanoparticles (SeNPs) have recently attracted attention because they combine the benefits of Se and lower toxicity compared to other chemical forms of this element. In this study, SeNPs were synthesized by a green method using ascorbic acid as the reducing agent and polyvinyl alcohol as stabilizer. The nanoparticles were widely characterized. To determine the total concentration of Se by ICP-MS, several isotopes and the use of He as collision gas were evaluated, which was effective in minimizing interferences. A method for sizing SeNPs by single particle ICP-MS (SP-ICP-MS) was developed. For this purpose, He and H2 were evaluated as collision/reaction gases, and the second one showed promising results, providing an average diameter of 48 nm for the SeNPs. These results agree with those obtained by TEM (50.1 nm). Therefore, the SP-ICP-MS can be implemented for characterizing SeNPs in terms of size and size distribution, being an important analytical tool for Se and other widely studied nanoparticles (e.g. Ag, Au, Ce, Cu, Fe, Zn). Finally, the antibacterial activity of SeNPs was assessed. The SeNPs showed bacteriostatic activity against three strains of Gram-positive bacteria and were particularly efficient in inhibiting the growth E. faecalis even at very low concentrations (MIC < 1.4 mg l−1). In addition, a bactericidal activity of SeNPs against S. aureus was observed. These nanoparticles may have potential application in pharmaceutical industry, biomedicine and agriculture.

Keywords: icp; collision; senps; single particle; activity; selenium nanoparticles

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.