LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intrinsic variation effect in memristive neural network with weight quantization

Photo by siora18 from unsplash

To analyze the effect of the intrinsic variations of the memristor device on the neuromorphic system, we fabricated 32 × 32 Al2O3/TiO x -based memristor crossbar array and implemented 3… Click to show full abstract

To analyze the effect of the intrinsic variations of the memristor device on the neuromorphic system, we fabricated 32 × 32 Al2O3/TiO x -based memristor crossbar array and implemented 3 bit multilevel conductance as weight quantization by utilizing the switching characteristics to minimize the performance degradation of the neural network. The tuning operation for 8 weight levels was confirmed with a tolerance of ±4 μA (±40 μS). The endurance and retention characteristics were also verified, and the random telegraph noise (RTN) characteristics were measured according to the weight range to evaluate the internal stochastic variation effect. Subsequently, a memristive neural network was constructed by off-chip training with differential memristor pairs for the Modified National Institute of Standards and Technology (MNIST) handwritten dataset. The pre-trained weights were quantized, and the classification accuracy was evaluated by applying the intrinsic variations to each quantized weight. The intrinsic variations were applied using the measured weight inaccuracy given by the tuning tolerance, RTN characteristics, and the fault device yield. We believe these results should be considered when the pre-trained weights are transferred to a memristive neural network by off-chip training.

Keywords: neural network; network; weight quantization; variation effect; memristive neural

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.