LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning curved DNA origami structures through mechanical design and chemical adducts

Photo by lanceplaine from unsplash

The bending and twisting of DNA origami structures are important features for controlling the physical properties of DNA nanodevices. It has not been fully explored yet how to finely tune… Click to show full abstract

The bending and twisting of DNA origami structures are important features for controlling the physical properties of DNA nanodevices. It has not been fully explored yet how to finely tune the bending and twisting of curved DNA structures. Traditional tuning of the curved DNA structures was limited to controlling the in-plane-bending angle through varying the numbers of base pairs of deletions and insertions. Here, we developed two tuning strategies of curved DNA origami structures from in silico and in vitro aspects. In silico, the out-of-plane bending and twisting angles of curved structures were introduced, and were tuned through varying the patterns of base pair deletions and insertions. In vitro, a chemical adduct (ethidium bromide) was applied to dynamically tune a curved spiral. The 3D structural conformations, like chirality, of the curved DNA structures were finely tuned through these two strategies. The simulation and TEM results demonstrated that the patterns of base pair insertions and deletions and chemical adducts could effectively tune the bending and twisting of curved DNA origami structures. These strategies expand the programmable accuracy of curved DNA origami structures and have potential in building efficient dynamic functional nanodevices.

Keywords: origami structures; tuning curved; curved dna; chemical adducts; bending twisting; dna origami

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.