LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergy effect of microwave annealing and high-pressure hydrogen annealing on Poly-Si thin-film transistor

Photo by seemurray from unsplash

Grain boundary (GB) is a significant factor that deteriorates the transfer characteristics of poly-Si thin-film transistors (TFTs). In this study, we utilized the synergistic effect of microwave annealing (MWA) and… Click to show full abstract

Grain boundary (GB) is a significant factor that deteriorates the transfer characteristics of poly-Si thin-film transistors (TFTs). In this study, we utilized the synergistic effect of microwave annealing (MWA) and high-pressure hydrogen annealing (HPHA) to effectively reduce grain boundary trap (GBT) density, resulting in improved field-effect mobility (μ) and subthreshold swing (SS). To investigate the synergistic effect of MWA and HPHA, the transfer characteristics of rapid thermal annealing and forming gas annealing devices were compared and analyzed as control devices. Furthermore, the mechanism of SS and mobility enhancement can be quantitatively understood by lowering the GB barrier height. In addition, Raman spectroscopy proved that poly-Si crystallinity was improved during MWA. Our results showed that MWA and HPHA play a vital role in reducing GBT density and improving poly-Si TFT characteristics.

Keywords: poly thin; thin film; effect; microwave annealing; high pressure; effect microwave

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.