LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cavity spectral-hole-burning to boost coherence in plasmon-emitter strong coupling systems

Photo from wikipedia

Significant decoherence of the plasmon-emitter (i.e., plexcitonic) strong coupling systems hinders the progress towards their applications in quantum technology due to the unavoidable lossy nature of the plasmons. Inspired by… Click to show full abstract

Significant decoherence of the plasmon-emitter (i.e., plexcitonic) strong coupling systems hinders the progress towards their applications in quantum technology due to the unavoidable lossy nature of the plasmons. Inspired by the concept of spectral-hole-burning (SHB) for frequency-selective bleaching of the emitter ensemble, we propose ‘cavity SHB’ by introducing cavity modes with moderate quality factors to the plexcitonic system to boost its coherence. We show that the detuning of the introduced cavity mode with respect to the original plexcitonic system, which defines the location of the cavity SHB, is the most critical parameter. Simultaneously introducing two cavity modes of opposite detunings, the excited-state population of the emitter can be enhanced by 4.5 orders of magnitude within 300 fs, and the attenuation of the emitter’s population can be slowed down by about 56 times. This theoretical proposal provides a new approach of cavity engineering to enhance the plasmon-emitter strong coupling systems’ coherence, which is important for realistic hybrid-cavity design for applications in quantum technology.

Keywords: cavity; plasmon emitter; emitter; strong coupling; coupling systems

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.