LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functionalized silica nanoparticles coupled with nanoporous membrane for efficient ionic current rectification

Photo by danedeaner from unsplash

In the last few decades, tremendous effort has been dedicated to mimicking the efficient ionic current rectification (ICR) of biological nanopores. Nanoporous membranes and singular nanopores with ICR functionality have… Click to show full abstract

In the last few decades, tremendous effort has been dedicated to mimicking the efficient ionic current rectification (ICR) of biological nanopores. Nanoporous membranes and singular nanopores with ICR functionality have been fabricated using advanced, yet costly technologies. We herein demonstrate that a simple, novel, and robust ICR platform can be constructed using 80 nm silica nanoparticles and a piece of 15 nm track-etched polycarbonate membrane. Efficient ICR can be obtained when voltages of different polarities are applied across the membrane, due to the asymmetric electrophoretic migration of silica nanoparticles whose surfaces are modified with different functional groups. The effect of pore size, ionic strength, pH, voltage magnitude, and density of silica nanoparticles on the efficiency of the ICR system has been systematically investigated in this report. Our results clearly show that smaller pore, lower ionic strength, appropriate pH value, higher electrical field strength, lower density of silica nanoparticles can generally enhance the efficiency of the ICR system. The principles of this new ICR system may find many potential applications in controllable drug delivery, energy storage and water purification.

Keywords: ionic current; silica nanoparticles; icr; efficient ionic; membrane

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.