LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of triangular Au/Ag nanoparticle arrays with sub-10 nm nanogap controlled by flexible substrate for surface-enhanced Raman scattering

Photo from wikipedia

Large-area ordered nanoparticle arrays have shown great potential as surface-enhanced Raman scattering (SERS) substrates. The preparation methods of metal nanogap with width greater than 10 nm are relatively mature. In… Click to show full abstract

Large-area ordered nanoparticle arrays have shown great potential as surface-enhanced Raman scattering (SERS) substrates. The preparation methods of metal nanogap with width greater than 10 nm are relatively mature. In contrast, nanomanufacturing methods for sub-10 nm still face challenges in realizing controllable and reproducible features. Herein, a series of triangular Au/Ag nanoparticle arrays (noted as Au/Ag NPAs) with sub-10 nm gap were prepared by utilizing stress-induced local cracking and high expansion coefficient of flexible polydimethylsiloxane (PDMS). The triangular tip-connected Au/Ag NPAs were firstly prepared by depositing Au and Ag films on home-made polystyrene (PS) templates, then gaps with precise size (3 nm, 5 nm, 7 nm, 9 nm and 11 nm) were achieved by controlling the temperature of flexible PDMS, and finally transferred to the silicon wafers using as SERS substrates. The results showed that when the prepared triangular Au/Ag NPAs with 3 nm nanogap were used as reliable SERS substrates, the relative standard deviation of Raman intensity at 621 cm−1 mode of Rhodamine 6G (R6G) with concentration of 10–6 M was 2.3%, indicating excellent uniformity. The approach showed good controllability and repeatability for SERS analysis, exhibiting good application prospect in surface trace detection.

Keywords: nanoparticle; raman scattering; surface enhanced; nanoparticle arrays; enhanced raman

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.