LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metal oxide nanocomposite based flexible nanogenerator: synergic effect of light and pressure

Photo by alexkixa from unsplash

Here, we report the fabrication of nanocomposite comprising of CuO and poly (vinylidene fluoride-hexafluoro propylene) (PVDF-HFP) for application in flexible piezoelectric nanogenerators (PENG). The chemically grown CuO nanostructures have been… Click to show full abstract

Here, we report the fabrication of nanocomposite comprising of CuO and poly (vinylidene fluoride-hexafluoro propylene) (PVDF-HFP) for application in flexible piezoelectric nanogenerators (PENG). The chemically grown CuO nanostructures have been characterized through electron microscopy, x-ray diffraction, and spectroscopic techniques. It has been found that the incorporation of optimal CuO nanostructures in PVDF-HFP can increase the output voltage of the PENG by 22 times and is assigned to the increment in the effective dielectric constant of host PVDF-HFP. Further, the nanogenerator exhibits a maximum power of ∼20 μW cm−2 at 3 MΩ load and can charge a capacitor under continuous bio-mechanical impart. Further, upon slight alteration of the device configuration, the output of the nanocomposite-based nanogenerator can be enhanced under illumination condition. The increment in overall piezopotential through photoexcitation in optically active CuO nanostructures can be assigned to the increment in output voltage. The wavelength dependent output variation reveal the maximum output of the PENG under blue light. Further, under white light illumination, the nanogenerator exhibits a maximum power which is 3 times higher than in dark condition and can charge a capacitor 52 times faster. The development of such superior flexible and optically active nanogenerators are quite promising for futuristic self-powered devices operated under mechanical and solar energies.

Keywords: nanogenerator; output; nanocomposite based; cuo nanostructures; pvdf hfp

Journal Title: Nanotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.