Metal-organic frameworks (MOFs), as a class of promising material with adjustable function and controllable structure, have been widely used in the food industry, chemical industry, biological medicine, and sensors. Biomacromolecules… Click to show full abstract
Metal-organic frameworks (MOFs), as a class of promising material with adjustable function and controllable structure, have been widely used in the food industry, chemical industry, biological medicine, and sensors. Biomacromolecules and living systems play a critical role in the world. However, the insufficiency in stability, recyclability, and efficiency, significantly impedes their further utilization in slightly harsh conditions. MOF-bio-interface engineering effectively address the above-mentioned shortages of biomacromolecules and living systems, and thereby attracting considerable attentions. Herein, we systematically review the achievements in the area of MOF-bio-interface. In particular, we summarize the interface between MOFs and proteins (enzymes and non-enzymatic proteins), polysaccharides, DNA, cells, microbes, and viruses. Meanwhile, we discuss the limitations of this approach and propose future research directions. We expect that this review could provide new insights and inspire new research efforts towards life science and material science.
               
Click one of the above tabs to view related content.