Magnetic skyrmions are topologically protected spin textures and they are suitable for future logic-in-memory applications for energy-efficient, high-speed information processing and computing technologies. In this work, we have demonstrated skyrmion-based… Click to show full abstract
Magnetic skyrmions are topologically protected spin textures and they are suitable for future logic-in-memory applications for energy-efficient, high-speed information processing and computing technologies. In this work, we have demonstrated skyrmion-based 3 bit majority logic gate using micromagnetic simulations. The skyrmion motion is controlled by introducing a gate that works on voltage controlled magnetic anisotropy. Here, the inhomogeneous magnetic anisotropy behaves as a tunable potential barrier/well that modulates the skyrmion trajectory in the structure for the successful implementation of the majority logic gate. In addition, several other effects such as skyrmion–skyrmion topological repulsion, skyrmion-edge repulsion, spin–orbit torque and skyrmion Hall effect have been shown to govern the logic functionalities. We have systematically presented the robust logic operations by varying the current density, magnetic anisotropy, voltage-controlled gate dimension and geometrical parameters of the logic device. The skyrmion Hall angle is monitored to understand the trajectory and stability of the skyrmion as a function of time in the logic device. The results demonstrate a novel method to achieve majority logic by using voltage controlled magnetic anisotropy which further opens up a new route for skyrmion-based low-power and high-speed computing devices.
               
Click one of the above tabs to view related content.