LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temperature-dependent photoluminescence properties of single defects in AlGaN micropillars

Photo from wikipedia

Single-photon emitters (SPEs) are attractive as integrated platforms for quantum applications in technologically mature wide-bandgap semiconductors since their stable operation at room temperature or even at high temperatures. In this… Click to show full abstract

Single-photon emitters (SPEs) are attractive as integrated platforms for quantum applications in technologically mature wide-bandgap semiconductors since their stable operation at room temperature or even at high temperatures. In this study, we systematically studied the temperature dependence of the SPE in AlGaN micropillar by experiment. The photoluminescence (PL) spectrum, PL intensity, radiative lifetime and second-order autocorrelation function measurements are investigated over the temperature range from 303 to 373 K. The point defects of AlGaN show strong zero phonon line in the wavelength range of 800–900 nm and highly antibunched photon emission even up to 373 K. Our study reveals a possible mechanism for linewidth broadening in AlGaN SPE at high temperatures. This indicates a possible key for on-chip integration applications based on this material operating at high temperatures.

Keywords: temperature dependent; defects algan; temperature; dependent photoluminescence; high temperatures

Journal Title: Nanotechnology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.