LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ growth strategy to construct perovskite quantum dot@covalent organic framework composites with enhanced water stability

Photo from wikipedia

Metal halide perovskite quantum dots (QDs) have excellent optoelectronic properties; however, their poor stability under water or thermal conditions remains an obstacle to commercialization. Here, we used a carboxyl functional… Click to show full abstract

Metal halide perovskite quantum dots (QDs) have excellent optoelectronic properties; however, their poor stability under water or thermal conditions remains an obstacle to commercialization. Here, we used a carboxyl functional group (−COOH) to enhance the ability of a covalent organic framework (COF) to adsorb lead ions and grow CH3NH3PbBr3 (MAPbBr3) QDs in situ into a mesoporous carboxyl-functionalized COF to construct MAPbBr3 QDs@COF core–shell-like composites to improve the stability of perovskites. Owing to the protection of the COF, the as-prepared composites exhibited enhanced water stability, and the characteristic fluorescence was maintained for more than 15 d. These MAPbBr3 QDs@COF composites can be used to fabricate white light-emitting diodes with a color comparable to natural white emission. This work demonstrates the importance of functional groups for the in situ growth of perovskite QDs, and coating with a porous structure is an effective way to improve the stability of metal halide perovskites.

Keywords: covalent organic; organic framework; water; enhanced water; stability; perovskite quantum

Journal Title: Nanotechnology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.