Various spectral bands provide different types of information, and information enhancement could be achieved by selective fusion of different spectral bands. The fused solar-blind Ultraviolet (UV)/Visible (VIS) bi-spectral sensing and… Click to show full abstract
Various spectral bands provide different types of information, and information enhancement could be achieved by selective fusion of different spectral bands. The fused solar-blind Ultraviolet (UV)/Visible (VIS) bi-spectral sensing and imaging can provide the precise location of UV targets in virtue of VIS background, which has been increasingly promoted. However, most reported UV/VIS bi-spectral photodetectors (PDs) only have one single channel towards a broadband spectrum of both UV and VIS light, which cannot distinguish two kinds of signals, hindering the image fusion of bi-spectral signals. This work demonstrates the solar-blind UV/VIS bi-spectral PD based on vertically stacking perovskite of MAPbI3 and ternary oxide of ZnGa2O4 with independent and distinct response toward solar-blind UV and VIS light in a single pixel. The PD exhibits excellent sensing properties with an I on/I off ratio of >107 and 102, detectivity of >1010 and 108 Jones, and response decay time of 90 μs and 16 ms for VIS and UV channels, respectively. The successful fusion of VIS and UV images suggests that our bi-spectral PD can be applied in the accurate identification of corona discharge and fire detection.
               
Click one of the above tabs to view related content.