In this paper we show that the dynamical behavior in (first octant) of the classical Kolmogorov systems of competitive type admitting a carrying simplex can be sometimes determined completely by… Click to show full abstract
In this paper we show that the dynamical behavior in (first octant) of the classical Kolmogorov systems of competitive type admitting a carrying simplex can be sometimes determined completely by the number of fixed points on the boundary and the local behavior around them. Roughly speaking, T has trivial dynamics (i.e. the omega limit set of any orbit is a connected set contained in the set of fixed points) provided T has exactly four hyperbolic nontrivial fixed points in with local attractors on the carrying simplex and local repellers on the carrying simplex; and there exists a unique hyperbolic fixed point in Int. Our results are applied to some classical models including the Leslie–Gower models, Atkinson-Allen systems and Ricker maps.
               
Click one of the above tabs to view related content.