LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pixel-wise quantification of myocardial perfusion using spatial Tikhonov regularization.

Photo from wikipedia

Quantification of myocardial perfusion by contrast-enhanced cardiovascular magnetic resonance imaging (CMR) aims for an observer independent and reproducible risk assessment of cardiovascular disease. Currently, the data used for the pixel-wise… Click to show full abstract

Quantification of myocardial perfusion by contrast-enhanced cardiovascular magnetic resonance imaging (CMR) aims for an observer independent and reproducible risk assessment of cardiovascular disease. Currently, the data used for the pixel-wise analysis of cardiac perfusion are either filtered prior to a fitting procedure, which inherently reduces the spatial resolution of data; or all pixels are considered without any regularization or prior filtering, which yields an unstable fit in the presence of low signal-to-noise ratio. Here, we propose a new pixel-wise analysis based on spatial Tikhonov regularization which exploits the spatial smoothness of the data and ensures accurate quantification even for images with low signal-to-noise ratio. The regularization parameter is determined automatically by an L-curve criterion. We study the performance of our method on a numerical phantom and demonstrate that the method reduces significantly the root-mean square error in the perfusion estimate compared to a non-regularized fit. In patient data our method allows us to recover the myocardial perfusion and to distinguish between healthy and ischemic regions.

Keywords: perfusion; myocardial perfusion; pixel wise; regularization; quantification

Journal Title: Physics in medicine and biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.