Quantification of myocardial perfusion by contrast-enhanced cardiovascular magnetic resonance imaging (CMR) aims for an observer independent and reproducible risk assessment of cardiovascular disease. Currently, the data used for the pixel-wise… Click to show full abstract
Quantification of myocardial perfusion by contrast-enhanced cardiovascular magnetic resonance imaging (CMR) aims for an observer independent and reproducible risk assessment of cardiovascular disease. Currently, the data used for the pixel-wise analysis of cardiac perfusion are either filtered prior to a fitting procedure, which inherently reduces the spatial resolution of data; or all pixels are considered without any regularization or prior filtering, which yields an unstable fit in the presence of low signal-to-noise ratio. Here, we propose a new pixel-wise analysis based on spatial Tikhonov regularization which exploits the spatial smoothness of the data and ensures accurate quantification even for images with low signal-to-noise ratio. The regularization parameter is determined automatically by an L-curve criterion. We study the performance of our method on a numerical phantom and demonstrate that the method reduces significantly the root-mean square error in the perfusion estimate compared to a non-regularized fit. In patient data our method allows us to recover the myocardial perfusion and to distinguish between healthy and ischemic regions.
               
Click one of the above tabs to view related content.