LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effect of magnetization of natural rubber latex coated magnetite nanoparticles on shear wave dispersion magneto-motive ultrasound.

Photo from wikipedia

The shear wave dispersion magneto-motive ultrasound (SDMMUS) method was recently developed to analyze the mechanical properties of a viscoelastic medium. This technique is based on the interaction of magnetic nanoparticles… Click to show full abstract

The shear wave dispersion magneto-motive ultrasound (SDMMUS) method was recently developed to analyze the mechanical properties of a viscoelastic medium. This technique is based on the interaction of magnetic nanoparticles (MNPs) with an external magnetic field to generate a shear wave within the medium labeled with MNPs. The propagation of this wave provides information about viscoelastic properties of the medium. In the previous work Arsalani et al. magnetite NPs were synthesized by co-precipitation method coated with natural rubber latex (NRL). In order to investigate the effect of NRL on the size and magnetization of MNPs, different amount of NRL, 0 μL, 100 μL, and 800 μL of a stock solution of NRL, were used during the synthesis process. The results showed that MNPs prepared with 800 μL of NRL, named as MNPs-800NRL, had the smallest size and highest magnetization. In the present paper, the main goal is to investigate if the MNPs-800NRL having the highest magnetization is also the best option for SDMMUS experiments among the others. All experiments were performed using gelatin tissue mimicking phantoms labeled with the aforementioned MNPs. Two factors including core size and magnetization were considered and based on the observed results the effect of magnetization was more prominent than the core size on the induced displacements. MNPs coated with a thicker NRL shell having the highest magnetization value enhanced the sensitivity and signal to noise ratio in SDMMUS. Different concentrations of this optimized MNPs were also examined to investigate the lowest possible concentration for observing shear waves in the SDMMUS technique.

Keywords: shear wave; wave dispersion; effect; dispersion magneto; magnetization; magneto motive

Journal Title: Physics in medicine and biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.