LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Restarted primal-dual Newton conjugate gradient method for enhanced spatial resolution of reconstructed cone-beam X-ray luminescence computed tomography images.

Photo from wikipedia

Cone-beam X-ray luminescence computed tomography (CB-XLCT) has been proposed as a promising imaging tool, which enables three-dimensional imaging of the distribution of nanophosphors (NPs) in small animals. However, the reconstruction… Click to show full abstract

Cone-beam X-ray luminescence computed tomography (CB-XLCT) has been proposed as a promising imaging tool, which enables three-dimensional imaging of the distribution of nanophosphors (NPs) in small animals. However, the reconstruction performance is usually unsatisfactory in terms of spatial resolution due to the ill-posedness of CB-XLCT inverse problem. To alleviate this problem and to achieve high spatial resolution, a reconstruction method consisting of inner and outer iterations based on a restarted strategy is proposed. In this method, the primal-dual Newton Conjugate Gradient method (pdNCG) is adopted in the inner iterations to get fast reconstruction, which is used for resetting the permission region and increase the convergence speed of the outer iteration. To assess the performance of the method, numerical simulation and physical phantom experiments were conducted with a CB-XLCT system. The results demonstrate that compared with conventional reconstruction methods, the proposed re-pdNCG method can accurately and efficiently resolve the adjacent NPs with the least relative error.

Keywords: ray luminescence; method; spatial resolution; beam ray; cone beam

Journal Title: Physics in medicine and biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.