LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Skin dose in chest wall radiotherapy with bolus: a Monte Carlo study.

Photo from wikipedia

Monte Carlo simulations are used to investigate skin dose resulting from chest wall radiotherapy with bolus. A simple model of a female thorax is developed, which includes a 2 mm-thick… Click to show full abstract

Monte Carlo simulations are used to investigate skin dose resulting from chest wall radiotherapy with bolus. A simple model of a female thorax is developed, which includes a 2 mm-thick skin layer. Two representative 6 MV source models are considered: a tangents source model consisting of a parallel opposed pair of medial and lateral fields and subfields, and an arc source model. Tissue equivalent (TE) boluses (thicknesses of 3, 5 and 10 mm) and brass mesh bolus are considered. Skin dose distributions depend on incident photon obliquity: for tangents, radiation is incident more obliquely, resulting in longer path lengths through the bolus and higher skin dose compared to the arc source model in most cases. However, for thicker TE boluses, attenuation of oblique photons becomes apparent. Brass bolus and 3 mm TE bolus result in similar mean skin dose. This relatively simple computational model allows for consideration of different bolus thicknesses, materials and usage schedules based on desired skin dose and choice of either tangents or an arc beam technique. For example, using a 5 mm TE bolus every second treatment would result in mean skin doses of 89% and 85% for tangents and the arc source model, respectively. The hot spot metric D0.01ccwould be 103% and 99%, respectively.

Keywords: source; skin dose; model; bolus

Journal Title: Physics in medicine and biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.