LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phantom experiments using soft-prior regularization EIT for breast cancer imaging.

Photo by nci from unsplash

OBJECTIVE A soft-prior regularization (SR) electrical impedance tomography (EIT) technique for breast cancer imaging is described, which shows an ability to accurately reconstruct tumor/inclusion conductivity values within a dense breast… Click to show full abstract

OBJECTIVE A soft-prior regularization (SR) electrical impedance tomography (EIT) technique for breast cancer imaging is described, which shows an ability to accurately reconstruct tumor/inclusion conductivity values within a dense breast model investigated using a cylindrical and a breast-shaped tank. APPROACH The SR-EIT method relies on knowing the spatial location of a suspicious lesion initially detected from a second imaging modality. Standard approaches (using Laplace smoothing and total variation regularization) without prior structural information are unable to accurately reconstruct or detect the tumors. The soft-prior approach represents a very significant improvement to these standard approaches, and has the potential to improve conventional imaging techniques, such as automated whole breast ultrasound (AWB-US), by providing electrical property information of suspicious lesions to improve AWB-US's ability to discriminate benign from cancerous lesions. MAIN RESULTS Specifically, the best soft-regularization technique found average absolute tumor/inclusion errors of 0.015 S m-1 for the cylindrical test and 0.055 S m-1 and 0.080 S m-1 for the breast-shaped tank for 1.8 cm and 2.5 cm inclusions, respectively. The standard approaches were statistically unable to distinguish the tumor from the mammary gland tissue. An analysis of false tumors (benign suspicious lesions) provides extra insight into the potential and challenges EIT has for providing clinically relevant information. SIGNIFICANCE The ability to obtain accurate conductivity values of a suspicious lesion (>1.8 cm) detected from another modality (e.g. AWB-US) could significantly reduce false positives and result in a clinically important technology.

Keywords: breast; cancer imaging; breast cancer; regularization; prior regularization; soft prior

Journal Title: Physiological measurement
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.