LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Does the amplitude of biceps brachii M waves increase similarly in both limbs during staircase, electrically elicited contractions?

Photo by bagasvg from unsplash

OBJECTIVE Humans usually tend to control more finely muscle force production in dominant than non-dominant upper limbs. It is well established that motor unit recruitment is a key mechanism by… Click to show full abstract

OBJECTIVE Humans usually tend to control more finely muscle force production in dominant than non-dominant upper limbs. It is well established that motor unit recruitment is a key mechanism by which muscle force is controlled, and we hypothesized that a relatively smaller number of motor units may be recruited in muscles of dominant than non-dominant limbs for any given increase in synaptic input. Hence, we investigated peripheral properties of dominant and non-dominant biceps brachii through the analysis of M-wave responses to incremental electrical stimulation. APPROACH Current pulses at progressively greater intensities were applied in the proximal region of biceps brachii of 16 subjects while surface electromyograms were recorded with a grid of electrodes in the distal region. M-wave amplitude was averaged across channels and normalized with respect to the maximum amplitude value, separately for each stimulation intensity and limb. Amplitude-current intensity curves were interpolated to provide an equal number of stimulation levels between limbs. Differences between dominant and non-dominant arms were assessed through the average increase in M-wave amplitude for consecutive stimulation intensities (increments). MAIN RESULTS Wilcoxon's signed-rank test showed that increments in the M-wave amplitude were significantly smaller (pā€‰ā€‰=ā€‰ā€‰0.017) in dominant than non-dominant biceps brachii. SIGNIFICANCE The results suggest that there was a more gradual recruitment of motor units in biceps brachii of dominant than non-dominant arms. This is in agreement with the hypothesis of a broader spectrum of motor unit recruitment thresholds in the dominant arm, which may contribute to a finer regulation of force production.

Keywords: wave amplitude; biceps brachii; dominant non; non dominant; motor; amplitude biceps

Journal Title: Physiological measurement
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.