LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interbeat interval-based sleep staging: work in progress toward real-time implementation

Photo from wikipedia

Objective. Cardiac activity changes during sleep enable real-time sleep staging. We developed a deep neural network (DNN) to detect sleep stages using interbeat intervals (IBIs) extracted from electrocardiogram signals. Approach.… Click to show full abstract

Objective. Cardiac activity changes during sleep enable real-time sleep staging. We developed a deep neural network (DNN) to detect sleep stages using interbeat intervals (IBIs) extracted from electrocardiogram signals. Approach. Data from healthy and apnea subjects were used for training and validation; 2 additional datasets (healthy and sleep disorders subjects) were used for testing. R-peak detection was used to determine IBIs before resampling at 2 Hz; the resulting signal was segmented into 150 s windows (30 s shift). DNN output approximated the probabilities of a window belonging to light, deep, REM, or wake stages. Cohen’s Kappa, accuracy, and sensitivity/specificity per stage were determined, and Kappa was optimized using thresholds on probability ratios for each stage versus light sleep. Main results. Mean (SD) Kappa and accuracy for 4 sleep stages were 0.44 (0.09) and 0.65 (0.07), respectively, in healthy subjects. For 3 sleep stages (light+deep, REM, and wake), Kappa and accuracy were 0.52 (0.12) and 0.76 (0.07), respectively. Algorithm performance on data from subjects with REM behavior disorder or periodic limb movement disorder was significantly worse, with Kappa of 0.24 (0.09) and 0.36 (0.12), respectively. Average processing time by an ARM microprocessor for a 300-sample window was 19.2 ms. Significance. IBIs can be obtained from a variety of cardiac signals, including electrocardiogram, photoplethysmography, and ballistocardiography. The DNN algorithm presented is 3 orders of magnitude smaller compared with state-of-the-art algorithms and was developed to perform real-time, IBI-based sleep staging. With high specificity and moderate sensitivity for deep and REM sleep, small footprint, and causal processing, this algorithm may be used across different platforms to perform real-time sleep staging and direct intervention strategies. Novelty & Significance (92/100 words) This article describes the development and testing of a deep neural network-based algorithm to detect sleep stages using interbeat intervals, which can be obtained from a variety of cardiac signals including photoplethysmography, electrocardiogram, and ballistocardiography. Based on the interbeat intervals identified in electrocardiogram signals, the algorithm architecture included a group of convolution layers and a group of long short-term memory layers. With its small footprint, fast processing time, high specificity and good sensitivity for deep and REM sleep, this algorithm may provide a good option for real-time sleep staging to direct interventions.

Keywords: sleep staging; sleep stages; time; real time; interbeat; deep rem

Journal Title: Physiological Measurement
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.