LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Model-based spectral causality of cardiovascular variability interactions during head-down tilt

Photo from wikipedia

Objective. Cardiovascular control mechanisms are commonly studied during baroreceptor unloading induced by head-up tilt. Conversely, the effect of a baroreceptor loading induced by head-down tilt (HDT) is less studied especially… Click to show full abstract

Objective. Cardiovascular control mechanisms are commonly studied during baroreceptor unloading induced by head-up tilt. Conversely, the effect of a baroreceptor loading induced by head-down tilt (HDT) is less studied especially when the stimulus is of moderate intensity and using model-based spectral causality markers. Thus, this study computes model-based causality markers in the frequency domain derived via causal squared coherence and Geweke spectral causality approach from heart period (HP) and systolic arterial pressure (SAP) variability series. Approach. We recorded HP and SAP variability series in 12 healthy men (age: from 41 to 71 yrs, median: 57 yrs) during HDT at −25°. The approaches are compared by considering two different bivariate model structures, namely the autoregressive and dynamic adjustment models. Markers are computed in traditional frequency bands utilized in cardiovascular control analysis, namely the low frequency (LF, from 0.04 to 0.15 Hz) and high frequency (HF, from 0.15 to 0.4 Hz) bands. Main results. We found that: (i) the two spectral causality metrics are deterministically related but spectral causality markers exhibit different discriminative ability; (ii) HDT reduces the involvement of the baroreflex in regulating HP-SAP variability interactions in the LF band, while leaving unmodified the action of mechanical feedforward mechanisms in both LF and HF bands; (iii) this conclusion does not depend on the model structure. Significance. We conclude that HDT can be utilized to reduce the impact of baroreflex and to study the contribution of regulatory mechanisms different from baroreflex to the complexity of cardiovascular control in humans.

Keywords: causality; head tilt; variability; model based; spectral causality

Journal Title: Physiological Measurement
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.