LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A power-balance model for the L-mode radiative density limit in fusion plasmas

Photo from wikipedia

A 1D cylindrical power-balance model of the radiation density limit (DL) gives a unified description of this phenomenon for stellarators, reversed field pinches and L-mode tokamaks (Zanca et al 2019… Click to show full abstract

A 1D cylindrical power-balance model of the radiation density limit (DL) gives a unified description of this phenomenon for stellarators, reversed field pinches and L-mode tokamaks (Zanca et al 2019 Nucl. Fusion 59 126011). The DL scaling laws for the three different configurations are all derived from a combination of just two equations: (a) a single-fluid heat-transport equation; (b) on-axis Ohm’s law with Spitzer resistivity, taken in a suitable limit for the stellarator. Here, we present a refined version of the model, alongside further experimental evidence supporting its successful application.

Keywords: fusion; power balance; limit; model; balance model; density limit

Journal Title: Plasma Physics and Controlled Fusion
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.