In this work we report on the investigation of the transport behavior of Ti neutral atoms sputtered in a reactive high power impulse magnetron sputtering device used for TiN coating… Click to show full abstract
In this work we report on the investigation of the transport behavior of Ti neutral atoms sputtered in a reactive high power impulse magnetron sputtering device used for TiN coating deposition. The time-resolved tunable diode laser induced fluorescence (TR-TDLIF), previously developed to study the transport of tungsten atoms, was improved to measure Ti neutral atom velocity distribution functions. We find that the TR-TDLIF signal has to be fitted using three Gaussian distributions, corresponding to the energetic, thermalized, and quasi-thermalized (atoms with non-zero mean velocity) atom populations. The ability to distinguish populations of atoms and to determine their corresponding deposited flux and energy may be of great interest to control film properties as desired for targeted applications. From the fitting, the vapor transport parameters (flux and energy) are calculated and studied as a function of distance from the target, pressure, and percentage of nitrogen in an Ar/N2 gas mixture. The study focuses on the effect of added nitrogen on the transport of sputtered atoms.
               
Click one of the above tabs to view related content.