LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Second harmonic generation in gallium phosphide microdisks on silicon: from strict \bar{4} to random quasi-phase matching

Photo from wikipedia

The convergence of nonlinear optical devices and silicon photonics is a key milestone for the practical development of photonic integrated circuits. The associated technological issues often stem from material incompatibility.… Click to show full abstract

The convergence of nonlinear optical devices and silicon photonics is a key milestone for the practical development of photonic integrated circuits. The associated technological issues often stem from material incompatibility. This is the case of second order nonlinear processes in monolithically integrated III-V semiconductor devices on silicon, where structural defects called antiphase domains strongly impact the optical properties of the material. We theoretically investigate the influence of antiphase domains on second harmonic generation in III-V whispering gallery mode microresonators on silicon and focus on the effects of the antiphase domains’ mean size (i.e. the correlation length of the distribution). We demonstrate that the domain distributions can have opposite effects depending on the nonlinear process under consideration: while antiphase domains negatively impact second harmonic generation under ¯4 quasi-phase matching conditions (independent of the correlation length), large conversion efficiencies can arise far from ¯4-quasi-phase matching provided that the APD correlation length remains within an appropriate range, and is still compatible with the spontaneous emergence of such defects in the usual III-V on Si epilayers. Such a build-up can be explained by the occurrence of random quasi-phase matching in the system.

Keywords: phase matching; second harmonic; harmonic generation; quasi phase

Journal Title: Semiconductor Science and Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.