The performance of a robotic hand is severely limited by the tactile feedback information similar to a human hand. Hence, a novel and robust tactile sensor has been developed to… Click to show full abstract
The performance of a robotic hand is severely limited by the tactile feedback information similar to a human hand. Hence, a novel and robust tactile sensor has been developed to cope with the challenge of robotic hand technology. Piezoelectric material is proposed as a suitable candidate for a new efficient tactile sensor due to its excellent piezoelectric properties. In this paper, a novel flexible tactile sensor based on Ce-doped BTO nanofibers was developed. The doping mechanism of cerium ions and the working process of the sensor were analysed. The results showed that sheer stress had no contribution to the sensor, this indicated that the sensor was easy to control according to the individual's wish. The output voltage of the sensor could reach up to 0.078 V which showed great potential for the future of intelligent robot skin application.
               
Click one of the above tabs to view related content.