LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Partial hybridisation of electron-hole states in an InAs/GaSb double quantum well heterostructure

Photo from wikipedia

InAs/GaSb coupled quantum well heterostructures are important semiconductor systems with applications ranging from spintronics to photonics. Most recently, InAs/GaSb heterostructures have been identified as candidate two-dimensional topological insulators, predicted to… Click to show full abstract

InAs/GaSb coupled quantum well heterostructures are important semiconductor systems with applications ranging from spintronics to photonics. Most recently, InAs/GaSb heterostructures have been identified as candidate two-dimensional topological insulators, predicted to exhibit helical edge conduction via fully spin-polarised carriers. We study an InAs/GaSb double quantum well heterostructure with an AlSb barrier to decouple partially the 2D electrons and holes, and find conduction consistent with a 2D hole gas, with an effective mass of 0.235 ± 0.005 m 0, existing simultaneously with hybridised carriers with an effective mass of 0.070 ± 0.005 m 0, where m 0 is the bare electron mass.

Keywords: well heterostructure; inas gasb; gasb double; double quantum; quantum well

Journal Title: Semiconductor Science and Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.