LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation into response characteristics of the chitosan gel artificial muscle

Photo by indiratjokorda from unsplash

Bionic artificial muscle made from chitosan gel is an emerging type of the ionic electro active polymer with advantages of large deformation, low cost and environmental protection etc, which leads… Click to show full abstract

Bionic artificial muscle made from chitosan gel is an emerging type of the ionic electro active polymer with advantages of large deformation, low cost and environmental protection etc, which leads to a research focus and wide application in the fields of bionic engineering and intelligence material recently. In this paper, effects and improvement mechanisms of the direct casting and genipin cross-linking processes on response speed properties of the chitosan gel artificial muscle (CGAM) were mainly studied. Based on in-depth analysis of the CGAM response mechanism, a platform was built for testing the response performance of the CGAM, then its equivalent circuit and mathematical models were also established. Furthermore, control experiments were carried out to test and analyze several performances of the CGAM on response speed, electrical conductivity, mechanical properties and microstructure with different control variables. The experimental results illustrated that the CGAM assembled by direct casting enabled its electric actuating membrane and non-metallic electrode membrane tightly attached together with low contact resistance, which dramatically promoted the electrical conductivity of the CGAM resulting in nearly doubled response speed. Besides, different concentrations of genipin were adopted to cross-link the CGAM actuating membranes, and then it was found that the response speed of the uncross-linked CGAM was fast in the initial stage, but as time increased, it declined rapidly with poor steadiness. While there was no obvious decrease over time on the response speed of the CGAM cross-linked with low genipin concentration. Namely, its stability was getting better and better. In addition, the response speed of the CGAM cross-linked with low concentration of genipin was roughly the same as uncross-linked CGAM, which was quicker than that of high concentration. In this work, its internal mechanisms, feasible assembly technique and green modification method were provided to further explore the practical applications significantly.

Keywords: response speed; response; cgam; artificial muscle; chitosan gel

Journal Title: Smart Materials and Structures
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.