The potential of several classes of mechanical metamaterials to induce their own overall rotational motion through the individual rotation of their subunits is examined. Using a theoretical approach, we confirm… Click to show full abstract
The potential of several classes of mechanical metamaterials to induce their own overall rotational motion through the individual rotation of their subunits is examined. Using a theoretical approach, we confirm that for various rotating rigid unit systems, if by design the sum of angular momentum of subunits rotating in different directions is made to be unequal, then the system will experience an overall rotation, the extent of which may be controlled through careful choice of the geometric parameters defining these systems. This phenomenon of self-induced rotation is also confirmed experimentally. Furthermore, we discuss how these systems can be designed in a special way so as to permit extended rotations which allows them to overcome geometric lockage and the relevance of this concept in applications ranging from satellites to spacecraft and telescopes employed in space.
               
Click one of the above tabs to view related content.