LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning MEMS cantilever devices using photoresponsive polymers

Photo from wikipedia

Microelectromechanical systems (MEMS) energy harvesting devices have had limited commercial success partly due to the frequency mismatch between the device and the vibration source. Tuning the cantilever device is one… Click to show full abstract

Microelectromechanical systems (MEMS) energy harvesting devices have had limited commercial success partly due to the frequency mismatch between the device and the vibration source. Tuning the cantilever device is one possible solution but developing a tuneable MEMS device is difficult. This paper demonstrates a novel method of tuning a MEMS cantilever device post-fabrication by using light responsive azobenzene liquid crystal polymers (LCP). Light exposure causes the photoresponsive polymers to change their elastic modulus, thus affecting the resonant frequency of the device. The photoresponsive polymer was integrated with three different MEMS cantilever substrates including: LCP, parylene, and silicon. The three cantilever beams all demonstrated changes in resonant frequency when exposed to UV light of 10.4%, 8.13%, and 4.86%, respectively. The change in resonant frequency is dependent on the stiffness of the substrate, the thickness of the azo-LCP, the intensity and duration of the light exposure, and the wavelength of the light. The results in this paper validate that light responsive polymers can be used to reduce the frequency of MEMS cantilevers post-fabrication, which could lead to developing devices that can be precisely tuned for specific applications.

Keywords: resonant frequency; tuning mems; frequency; photoresponsive polymers; device; mems cantilever

Journal Title: Smart Materials and Structures
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.