LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Critical bending and shape memory effect in magnetoactive elastomers

Photo by sunyu from unsplash

The results of a study of magnetoactive elastomers (MAEs) consisting of an elastomer matrix with embedded ferromagnetic particles are presented. A continuous critical bending induced by the magnetic field, characterized… Click to show full abstract

The results of a study of magnetoactive elastomers (MAEs) consisting of an elastomer matrix with embedded ferromagnetic particles are presented. A continuous critical bending induced by the magnetic field, characterized by a critical exponent for the bending magnitude, and the derivative of which has a singularity in the critical region is reported for the first time. The mechanical stability loss and the symmetry reduction of the magnetic state, which are interrelated with each other, take place at the critical point. The magnetization in the high-symmetric state (below the critical point) is directed along the magnetic field and the torque is absent. Above the critical point, the magnetization and the magnetic field are noncollinear and there arises a torque, which is self-consistent with the bending. The magnetic field dependence of the MAE bending was found to have a hysteresis, which is associated with the magneto-rheological effect. The shape memory effect was also obtained for the MAE bending in a cycle consisting of magnetization, cooling (at H ≠ 0), and heating (at H = 0). The influence of the critical glass transition temperature of the matrix, as well as its melting/solidification temperature, on the magnetic shape memory effect was studied.

Keywords: effect; shape memory; memory effect; bending

Journal Title: Smart Materials and Structures
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.