LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Superconducting magnetic bearings with bulks and 2G HTS stacks: comparison between simulations using H and A-V formulations with measurements

Photo from academic.microsoft.com

A-V and H are two of the most widespread formulations applied in the literature to calculate current distribution in high-temperature superconductors (HTSs). Both formulations can successfully solve problems related to… Click to show full abstract

A-V and H are two of the most widespread formulations applied in the literature to calculate current distribution in high-temperature superconductors (HTSs). Both formulations can successfully solve problems related to large-scale HTS applications, but the way to implement the calculations is different. In recent years, several authors have chosen the H formulation to solve problems related to HTS applications. This choice can probably be attributed to the easy implementation of the H formulation with the aid of commercial finite element method (FEM) software, producing precise results and performing fast calculations. In a previous work, we proposed the use of the H formulation to solve superconducting magnetic bearing (SMB) problems. However, most of the SMB simulations presented in the literature are solved using the A-V formulation implemented with the finite difference method (FDM). Which of these two techniques is more suitable for superconducting magnetic bearing applications? This paper aims to answer this question. In order to do so, an experimental rig was developed to test SMBs using YBCO bulks or stacks of coated conductors. The simulated levitation force results from the A-V formulation using FDM and from the H formulation using FEM were compared with the experimental data. In general, the calculation time and the results error obtained with both formulations are comparable. It is worth mentioning that the main contribution of this paper is to present improvements to reduce the A-V formulation computational time and details of how to implement it using FDM in any platform. For this reason, most of this work is about the A-V formulation, while the H formulation is just presented for comparison.

Keywords: magnetic bearings; hts stacks; formulation; bearings bulks; superconducting magnetic; bulks hts

Journal Title: Superconductor Science and Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.