LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controllable supercurrent in mesoscopic superconductor-normal metal-ferromagnet crosslike Josephson structures

Photo by viazavier from unsplash

A nonmonotonic dependence of the critical Josephson supercurrent on the injection current through a normal metal/ferromagnet weak link from a single domain ferromagnetic strip has been observed experimentally in nanofabricated… Click to show full abstract

A nonmonotonic dependence of the critical Josephson supercurrent on the injection current through a normal metal/ferromagnet weak link from a single domain ferromagnetic strip has been observed experimentally in nanofabricated planar crosslike S-N/F-S Josephson structures. This behavior is explained by 0–π and π–0 transitions, which can be caused by the suppression and Zeeman splitting of the induced superconductivity due to interaction between N and F layers, and the injection of spin-polarized current into the weak link. A model considering both effects has been developed. It shows the qualitative agreement between the experimental results and the theoretical model in terms of spectral supercurrent-carrying density of states of S-N/F-S structures and the spin-dependent double-step nonequilibrium quasiparticle distribution.

Keywords: josephson; normal metal; crosslike josephson; josephson structures; supercurrent; metal ferromagnet

Journal Title: Superconductor Science and Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.