LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Towards optimal experimental tests on the reality of the quantum state

Photo from academic.microsoft.com

The Barrett–Cavalcanti–Lal–Maroney (BCLM) argument stands as the most effective means of demonstrating the reality of the quantum state. Its advantages include being derived from very few assumptions, and a robustness… Click to show full abstract

The Barrett–Cavalcanti–Lal–Maroney (BCLM) argument stands as the most effective means of demonstrating the reality of the quantum state. Its advantages include being derived from very few assumptions, and a robustness to experimental error. Finding the best way to implement the argument experimentally is an open problem, however, and involves cleverly choosing sets of states and measurements. I show that techniques from convex optimisation theory can be leveraged to numerically search for these sets, which then form a recipe for experiments that allow for the strongest statements about the ontology of the wavefunction to be made. The optimisation approach presented is versatile, efficient and can take account of the finite errors present in any real experiment. I find significantly improved low-cardinality sets which are guaranteed partially optimal for a BCLM test in low Hilbert space dimension. I further show that mixed states can be more optimal than pure states.

Keywords: reality quantum; towards optimal; optimal experimental; quantum state

Journal Title: New Journal of Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.