LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anisotropic RKKY interaction and modulation with mechanical strain in phosphorene

Photo by boxedwater from unsplash

We investigate the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction between two magnetic impurities placed on a phosphorene surface based on the tight-binding model. It is found that the RKKY interaction exhibits strong anisotropy… Click to show full abstract

We investigate the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction between two magnetic impurities placed on a phosphorene surface based on the tight-binding model. It is found that the RKKY interaction exhibits strong anisotropy along different lattice directions and is sensitive to the deformed direction. The RKKY interaction is largest for impurities distributed in the armchair direction while the strain effect is strongest for the deformation exerted along the zigzag direction. Applied linear strain can increase the RKKY magnitude nonlinearly, and observably prolong the decay rate from the exponent to the law with the impurity distance. Most interestingly, near the strain-induced closing point of the bandgap, we find that the RKKY interaction is no longer simply ferromagnetic or antiferromagnetic, but presents oscillatory behavior, exhibiting the transition from ferromagnetism to antiferromagnetism. This originates from the combination effect of negative energy in the conduction band due to modification of the Fermi surface and the narrowing bandgap, and importantly both of them are reached simultaneously just by tuning the strain. Therefore, the strain effect proves to be an alternative approach to engineering impurity interactions in phosphorene materials.

Keywords: rkky interaction; anisotropic rkky; interaction; strain; interaction modulation

Journal Title: New Journal of Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.