LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultracold atoms in disordered potentials: elastic scattering time in the strong scattering regime

Photo from wikipedia

We study the elastic scattering time $\tau_\mathrm{s}$ of ultracold atoms propagating in optical disordered potentials in the strong scattering regime, going beyond the recent work of J. Richard \emph{et al.}… Click to show full abstract

We study the elastic scattering time $\tau_\mathrm{s}$ of ultracold atoms propagating in optical disordered potentials in the strong scattering regime, going beyond the recent work of J. Richard \emph{et al.} \textit{Phys. Rev. Lett.} \textbf{122} 100403 (2019). There, we identified the crossover between the weak and the strong scattering regimes by comparing direct measurements and numerical simulations to the first order Born approximation. Here we focus specifically on the strong scattering regime, where the first order Born approximation is not valid anymore and the scattering time is strongly influenced by the nature of the disorder. To interpret our observations, we connect the scattering time $\tau_\mathrm{s}$ to the profiles of the spectral functions that we estimate using higher order Born perturbation theory or self-consistent Born approximation. The comparison reveals that self-consistent methods are well suited to describe $\tau_\mathrm{s}$ for Gaussian-distributed disorder, but fails for laser speckle disorder. For the latter, we show that the peculiar profiles of the spectral functions, as measured independently in V. Volchkov \emph{et al.} \textit{Phys. Rev. Lett.} \textbf{120}, 060404 (2018), must be taken into account. Altogether our study characterizes the validity range of usual theoretical methods to predict the elastic scattering time of matter waves, which is essential for future close comparison between theory and experiments, for instance regarding the ongoing studies on Anderson localization.

Keywords: strong scattering; scattering; elastic scattering; scattering time; scattering regime

Journal Title: New Journal of Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.