LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Superfluidity from correlations in driven boson systems

Photo from wikipedia

We investigate theoretically the superfluidity of a one-dimensional boson system whose hopping energy is periodically modulated with a zero time average, which results in the suppression of first-order single-particle hopping… Click to show full abstract

We investigate theoretically the superfluidity of a one-dimensional boson system whose hopping energy is periodically modulated with a zero time average, which results in the suppression of first-order single-particle hopping processes. The dynamics of this Floquet-engineered flat-band system is entirely driven by correlations and described by exotic Hamiltonian and current operators. We employ exact diagonalization and compare our results with those of the conventional, undriven Bose–Hubbard system. We focus on the two main manifestations of superfluidity, the Hess-Fairbank effect and the metastability of supercurrents, with explicit inclusion of an impurity when relevant. Among the novel superfluid features, we highlight the presence of a cat-like ground state, with branches that have opposite crystal momentum but carry the same flux-dependent current, and the essential role of the interference between the collective components of the ground-state wave function. Calculation of the dynamic form factor reveals the presence of an acoustic mode that guarantees superfluidity in the thermodynamic limit.

Keywords: system; superfluidity; correlations driven; superfluidity correlations; driven boson; boson systems

Journal Title: New Journal of Physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.