LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On some conditionally solvable quantum-mechanical problems

Photo from academic.microsoft.com

We analyze two conditionally solvable quantum-mechanical models: a one-dimensional sextic oscillator and a perturbed Coulomb problem. Both lead to a three-term recurrence relation for the expansion coefficients. We show diagrams… Click to show full abstract

We analyze two conditionally solvable quantum-mechanical models: a one-dimensional sextic oscillator and a perturbed Coulomb problem. Both lead to a three-term recurrence relation for the expansion coefficients. We show diagrams of the distribution of their exact eigenvalues with the addition of accurate ones from variational calculations. We discuss the symmetry of such distributions. We also comment on the wrong interpretation of the exact eigenvalues and eigenfunctions by some researchers that has led to the prediction of allowed cyclotron frequencies and field intensities.

Keywords: solvable quantum; mechanical problems; quantum mechanical; conditionally solvable

Journal Title: Physica Scripta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.