LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generation of nonclassical states by superposition of number-conserving operations on squeezed thermal state

Photo by kellysikkema from unsplash

The nonclassicality is the prerequisite for quantum states to be applied into quantum information, especially for quantum metrology. Here we theoretically investigate the non-classical properties of the non-Gaussian state generated… Click to show full abstract

The nonclassicality is the prerequisite for quantum states to be applied into quantum information, especially for quantum metrology. Here we theoretically investigate the non-classical properties of the non-Gaussian state generated by repeatedly operating a number-conserving generalized superposition of products (GSP), i.e., (s 1 aa † + t 1 a † a)m with s12+t12=1, on the squeezed thermal state (STS), in terms of second-order correlation function, Mandel’s Q parameter, quadrature squeezing and Wigner function (WF). It is shown that, compared to the cases of the STS, the GSP-STS with the high-order GSP operations (m > 1) at the small-squeezing levels can be beneficial to the existence of the photon-antibunching effect, the sub-Poissonian distribution and the partial negativity of the WF, apart from the quadrature squeezing. In addition, for the case of m = 1, we also compare with the non-classical properties of several different non-Gaussian resources, involving the photon-subtracted-then-added (PSTA) STS, the GSP-STS and the photon-added-then-subtracted (PATS) STS. It is found that the PSTA-STS with respect to the sub-Poissonian distribution and the partial negativity of the WF has a better performance than others. Significantly, the generated GSP-STS has an obvious advantage of showing the photon-antibunching effects, compared to the PSTA-STS and the PATS-STS, which means that our scheme may have an excellent guidance for the practical implementations in quantum information.

Keywords: state; photon; number conserving; squeezed thermal; thermal state

Journal Title: Physica Scripta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.