LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Calibration-free laser-based spectroscopic study of Sn-based alloys

Photo from academic.microsoft.com

The elemental quantification of liquid metal divertor (LMD) surface is important for understanding the material erosion, migration, re-deposition, and fuel retention in Plasma-Facing Components (PFCs). Currently, LMD are attractive candidates… Click to show full abstract

The elemental quantification of liquid metal divertor (LMD) surface is important for understanding the material erosion, migration, re-deposition, and fuel retention in Plasma-Facing Components (PFCs). Currently, LMD are attractive candidates for the short- and long-term operation of fusion devices like DEMO. Liquid metals can provide self-cooling, self-replenishing plasma-facing surfaces requiring very little upkeep. In a previous work, we studied Li and LiSn layers deposited on attachment screws in the COMPASS tokamak by means of Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS). Several problems were encountered related to the detection of Sn in LiSn. Thus, in the present work, we are optimizing the experimental conditions for the detection of Sn I-II and Pb I-II in Pb-containing Sn-based alloys, performing the quantification of Pb in traces and in bulk quantities using CF-LIBS approach.

Keywords: based alloys; calibration free; free laser; laser based

Journal Title: Physica Scripta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.