LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum propagator for a general time-dependent quadratic Hamiltonian: Application to interacting oscillators in external fields

Photo from wikipedia

In this paper, we find the quantum propagator for a general time-dependent quadratic Hamiltonian. The method is based on the properties of the propagator and the fact that the quantum… Click to show full abstract

In this paper, we find the quantum propagator for a general time-dependent quadratic Hamiltonian. The method is based on the properties of the propagator and the fact that the quantum propagator fulfills two independent partial differential equations originating from Heisenberg equations for positions and momenta. As an application of the method, we find the quantum propagator for a linear chain of interacting oscillators for both periodic and Dirichlet boundary conditions. The state and excitation propagation along the harmonic chain in the absence and presence of an external classical source is studied and discussed. The location of the first maxima of the probability amplitude P(n, τ) is a straight line in the (n, τ)-plane, indicating a constant speed of excitation propagation along the chain.

Keywords: propagator general; time dependent; general time; dependent quadratic; quantum propagator; quadratic hamiltonian

Journal Title: Physica Scripta
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.