LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hawking radiation particle spectrum of a Kerr-Newman black hole

Photo from wikipedia

Charged, rotating Kerr-Newman black holes represent the most general class of asymptotically flat black hole solutions to the Einstein-Maxwell equations of general relativity. Here, we consider a simplified model for… Click to show full abstract

Charged, rotating Kerr-Newman black holes represent the most general class of asymptotically flat black hole solutions to the Einstein-Maxwell equations of general relativity. Here, we consider a simplified model for the Hawking radiation produced by a Kerr-Newman black hole by utilizing a (1+1)-dimensional accelerated boundary correspondence (i.e. a flat spacetime mirror trajectory) in Minkowski spacetime. We derive the particle spectrum of the outgoing massless, scalar field and its late-time thermal distribution which reduces to the Kerr, Reissner-Nordström and Schwarzschild cases in the appropriate limits. We also compute the particle spectrum of the extremal Kerr-Newman system, showing that the total energy emitted is finite.

Keywords: newman black; black hole; particle spectrum; kerr newman

Journal Title: Journal of Cosmology and Astroparticle Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.