LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Model-independent radiative symmetry breaking and gravitational waves

Photo from wikipedia

Models where symmetries are predominantly broken (and masses are then generated) through radiative corrections typically produce strong first-order phase transitions with a period of supercooling, when the temperature dropped by… Click to show full abstract

Models where symmetries are predominantly broken (and masses are then generated) through radiative corrections typically produce strong first-order phase transitions with a period of supercooling, when the temperature dropped by several orders of magnitude. Here it is shown that a model-independent description of these phenomena and the consequent production of potentially observable gravitational waves is possible in terms of few parameters (which are computable once the model is specified) if enough supercooling occurred. It is explicitly found how large the supercooling should be in terms of those parameters, in order for the model-independent description to be valid. It is also explained how to systematically improve the accuracy of such description by computing higher-order corrections in an expansion in powers of a small quantity, which is a function of the above-mentioned parameters. Furthermore, the corresponding gravitational wave spectrum is compared with the existing experimental results from the latest observing run of LIGO and VIRGO and the expected sensitivities of future gravitational wave experiments to find regions of the parameter space that are either ruled out or can lead to a future detection.

Keywords: radiative symmetry; breaking gravitational; gravitational waves; symmetry breaking; independent radiative; model independent

Journal Title: Journal of Cosmology and Astroparticle Physics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.