LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CARS detection of liquid-like phase appearance in small mesopores

Photo by efekurnaz from unsplash

Nonlinear-optical spectroscopic techniques that employ signals from the molecules located inside nanopores have promising potential for investigations of fluid behavior under nanoconfinement. Here, we apply coherent anti-Stokes spectroscopy to investigate… Click to show full abstract

Nonlinear-optical spectroscopic techniques that employ signals from the molecules located inside nanopores have promising potential for investigations of fluid behavior under nanoconfinement. Here, we apply coherent anti-Stokes spectroscopy to investigate the appearance of a liquid-like phase of carbon dioxide in mesoporous Vycor glass under isothermal compression. The spectra of the Q-branch (1388?cm?1) are registered at???11 ?C in a wide pressure range, starting from submonolayer coverage of the pore wall up to the bulk saturation pressure. Results show that a spectral contribution, similar to that of the bulk liquid, appears at relatively low pressure that is several times lower than the capillary-condensation pressure. The Raman shift of the peak is equal to that of the bulk liquid, although the linewidth is somewhat increased. The peak is attributed to the layers adsorbed beyond the monolayer or to small liquid-like clusters appearing in specific areas of the porous network. The spectroscopic approach presented here demonstrates the ability to detect and estimate small amounts of the liquid-like phase and to distinguish it from the layers strongly interacting with the pore surface.

Keywords: like phase; appearance; pressure; liquid like

Journal Title: Laser Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.