LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers

Photo from wikipedia

Influence of pump power distribution on modal instabilities (MI) is studied numerically, which reveals that the MI threshold is dependent on the pump power distribution in fiber amplifiers and can… Click to show full abstract

Influence of pump power distribution on modal instabilities (MI) is studied numerically, which reveals that the MI threshold is dependent on the pump power distribution in fiber amplifiers and can be increased by optimizing the pump power distribution without any adjustment of other amplifier parameters. It shows that amplifiers with backward or bi-direction pump schemes have a higher threshold than those employing forward pump schemes. For backward pumped amplifiers employing fiber with core/clad diameter being 20/400 µm, the MI threshold yields a 42% increase compared to the forward pumped ones. For bi-direction pumped amplifiers, there exists an optimal power ratio between forward and backward pump power, which results in the highest threshold power. When amplifiers with core/clad diameter being 20/400 µm employ a bi-direction pump scheme at the optimal backward pump power fraction, the threshold can be increased by a factor of approximately 60% with respect to the forward pump configuration. The threshold increment factor reduces as the gain saturation effect weakens. It also shows that the MI threshold can be increased by employing multi-point side pump schemes.

Keywords: pump; pump power; power; fiber; power distribution

Journal Title: Laser Physics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.